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D I F F U S I O N  M O D E L  O F  L O N G I T U D I N A L  A G I T A T I O N  

I N  H E A T  A N D  M A S S  T R A N S F E R  P R O C E S S E S .  

3. T H I R D - L E V E L  P R O B L E M S  

V. V. Zakharenko and T. N. Azyasskaya UDC 66.040.2:533.6.011.6 

The paper is a continuation of reports [1, 2] on a diffusion model (DM) used for describing heat and mass 

transfer processes. A heat exchanger (mass exchanging apparatus) is examined with two flows moving in 

the DM mode or in a mode of one of the limiting cases of the DM: initial displacement (ID) or ideal agitation 

(IA). All possible combinations are found. The problems are divided into three levels of complexity of the 

combinations. Derivation of formulas and solutions for determining the carrying capacities of the heat 

exchanger (mass exchanging apparatus) are considered as applied to the problems of the third level 

The present paper completes a series of works [ 1, 2 ] systematizing DM employment for the described heat 

and mass transfer processes. 

The object of the analysis is a heat exchanger (mass exchanging apparatus) with two flows moving in the 

DM mode or in modes of its limiting cases - ideal displacement (ID) or ideal agitation (IA). 

In [ 1 ] all possible combinations of these flow structures and their directions are divided into three levels 

of complexity. Differential equations are derived and boundary conditions are formulated. Formulas for the criterion 

R in the 1st-level problems are obtained [1 ], and a general expression for R is given. In [2 ] the solutions of the 

2nd-level problems and limit transition from the 2nd to the 1st level are considered; an attempt is made to obtain 

generalized expressions for R. 

Below we present an analysis of the 3rd-level problems of transfer, derive formulas for R, and study limit 

transitions from the 3rd to the 2nd level. 

Cases in which the motion of the both flows is described by the DM are referred to the 3rd-level models. 

Four cases (see Table 4) are possible here. We consider two of them - forward and reverse flows (the two remaining 

cases are symmetric to the above). 

So, a forward flow 

hot (DM) --, 

cold (DM) 

We write the corresponding differential equations and boundary conditions: 

7 " - p T " - a p ( r - t ) = O ;  x = O ,  T = T - 1  ~"; x =  I ,  T 0 
P 

(55) 

t - q i + b q ( T - t ) = O ;  x = O ,  t = t - - l ' t , "  
q 

= 1, i = 0 .  (s6) 

We solve the system of differential equations by the higher-order technique 

T ' -  (p + q) T -  (ap - pq + bq) T + (a + b) pq T"= O. (57) 

The characteristic equation is 
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k 4 - (p -t- q)  k 3 - ( a p  - pq + bq) k 2 + (a + b) pqk = 0 ,  (58) 

whence ko -- 0, and kl,  k2, k3 are roots of the equation 

k 3 -  ( p + q )  k z -  ( a p - p q +  bq) k +  ( a +  b) p q = O .  (59) 

Then we need the properties of the roots kl, k2 and ka: 

k I + k 2 + k 3 = p  + q ,  

klk  2 + kzk 3 + k3k I = pq - ap - bq, (60) 

klk2k3 = - pq (a + b).  

The solution of differential equation (57) has the form 

T = 20 + 21 exp (klX) + ;t 2 exp (kzx) + 23 exp (kax) . (61) 

Having substituted T from (61) and its derivatives ~h ~-into (55), we express t 

( ) / 2 kl k2 k2 
t = 2 0 + 2 1  - - -k l  + - - +  1 exp(k lx  ) +,1. 2 - - - + - - +  1 x ap a ap a 

x e x p ( k 2 x  ) + 2  a k3 + + 1 exp(k3x ) 
ap a 

Using the boundary conditions, their combination, and the characteristic equation (59) itself, designating 

T' - t' - A, we obtain the following system: 

Aap 
a -b b = ~ 1  (P - k l )  q-'~2 (P - k2) --b~3 (P - k3) , 

0 = A l k  l e x p k  1 +22k  2 e x p k  2 +23k 3 e x p k  3,  

0 = 21k~ (p - ~t) exp kl + 2 2 ~  (p - k2) exp k~ + ~ 3 ~  (P - k3) exp k 3  

The solution of this system (e.g., by the Cramer method) leads to expressions for 2 l, 22, 23: 

2 
Aap (k2k ~ (p _ k3 ) exp (k z + k3) - k3k  2 (p  - k2) exp (k 2 + k3) ) 

a + b  
21 = Zn ' 

Aap (k3k ~ (p _ kl ) exp (k a + kl) - k lk  2 (p - k3) exp (k 3 + kl) ) 
a + b  

22 = Zn ' 

2 
Aap (k lk  ~ (p _ k2 ) exp (k 1 + kz) - k2k 1 (p - k x) exp (k I + k2) ) 

a + b  
23 = Zn ' 

where the denominator is 

Z n  = (p - k l )  (k2  k2 (p  - k3) e x p  (k 2 + k3) - k3k  ~ (p  - k2) e x p  (k 2 + k3) ) + 

2 
+ (p - k2) (k3k ~ (p - kl) exp (k 3 + kl) - k l k  3 (p  - k3) e x p  (k 3 + kl) ) + 
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+ (p - k3) (klk ~ (p - k2) exp (k I + k2) - -  k2k ~ (p - -  kl) exp (k I + k2) ) . 

As a result,  in the forward flow process of heat  t ransfer  the heat flux from the hot agent  to the cold agent  
is written as 

�9 ( lTx=o Tx ) :  Q =  G1C 1 (T - T") =G1C l T x = O - p  - -1 

. . . .  e x p k  I +Jl  2 1 - - - - e x p k  2 + ; t  3 1 - - - - e x p k  3 . 
P P P 

We introduce the criterion R = Q/(G1CIAa)  = Q/&KF,  which is the ratio of the carrying capacities of the 

process as a whole and  the stage of surface transfer.  Then,  using the properties of roots (60) and  multiplying the 

fraction by  exp ( - k l - k 2 - k 3 ) ,  we obtain after  t ransformations 

1[ 
R - --a+b 1 - {pq (k2k 3 (k 2 - k3) + (k3k 1 (k 3 - -  kl) + klk 2 (k I - -  k 2 ) ) }  X 

X {(p -- kl)  (q - kl) k2k 3 (k 2 - k3) exp ( -  kl)  + (p - k2) • 

-1 
• (q - k2) k3k I (k 3 - kl)  exp ( -  k2) + (p - ka) (q - k3) klk  2 (k I - k2) exp ( -  k3) } 

We consider  limit transit ions (62). When q ~ oo, the transit ion 

. (62) 

hot (DM) ~ hot (DM) --, 

cold (DM) -~ cold (ID) 4 .  

must hold. To realize this we divide the characteristic equation (58) by q 

- -~--  + 1 k 2 +  p - a P - b  k + p ( a + b ) = O ;  
q 

now we have k 3 ~ q + b for q ~ 0o and roots kl and k2 are found from the quadratic equation 

k 2 -  ( p - b )  k - p ( a + b )  = 0 .  

Under  the considered conditions at k 3 = q + b it is obvious that  p - k 3 - - , -q ;  q - k 3 ~ - b ;  q - k2 --" q; 

k2k3 "" qk2; k3kl "-" qkl; q - kl --" q; k2 - k3 '-" -q ;  k3 - kl "-" q. Then  Eq. (62) takes the form 

1 ( p ( k l - k 2 )  1 R -  1 -  
a -7,- b k 1 (p - k2) exp ( -  k2) - k 2 (p - kl) exp ( -  k]) " 

Using the properties of roots (60) we finally obtain 

R - - -  1 -  
a + b  ( a + b + k l )  e x p ( - k 2 ) - ( a + b + k 2 ) e x p ( - k l )  ' 

which is in full agreement  with formula (28) obtained in [21 for the corresponding 2nd-level problem. 

When q --, 0, the transit ion 

hot (DM) --, hot (DM) --, 
,,,,) 

cold (DM) ~ cold (IA) <--'. 

must hold. 
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For q ~ 0, k 3 ~ q(l + b/a) ,  and roots kl and k2 are found from the quadratic equation 

k 2 - pk - ap = O. 

Under  the considered conditions at k3 = q(1 + b/a)  it is obvious that p - k 3 ~ p; q - k 3 --, - q b / a ;  

k2 - k3 ~ k2; k3 - kl -- kl; exp (-k3)  --" I. 
Then Eq. (62) takes the form 

1 ( a p ( k l - k 2 )  ) 
R -  a ~ - b  1 -  ( p _ k 2 ) k l  ( a + b )  e x p ( - k 2 ) -  (p---~:j)k 2 ( a +  b) e x p ( - k l ) - p b ( k  I - k 2 )  " 

Using the properties of roots (60), we obtain 

R = 
(k 1 + a) exp ( -  k 2 )  - (k 2 + a )  exp ( -  kl) - ( k  1 - k 2 )  

(a + b) ((kl + a) exp ( -  k2) - (k 2 + a) exp ( -  ks) ) - b (k~ - k2) " 

After simple transformations we have in final form 

- -  1 - -  " 

a ( a + k l )  e x p ( - k 2 )  ( a + k 2 )  e x p ( - k  
R ~ 

1 + - -  1 -  
a (a + kl) exp ( -  k2) - (a + k2) exp ( -  kl) 

which is in full agreement with formula (29) obtained in [2] for the corresponding 2nd-level problem. 

Similarly we can consider limit transitions for the hot agent: when p --, oo and p -~ 0: 

hot (DM) --, { hot (ID) --, 
when p --, oo cold (DM) --, ~ cold (DM) --, 

{ hot (DM) -- { hot (IA) o 
when p --, 0 cold (DM) ~ ~ cold (DM) --, 

The conducted analysis shows that for the case of forward flow the formula for the DM 3rd-level problem 

in the limiting cases naturally passes over to the corresponding formulas of the 2nd-level problems; by the way, 

this indirectly indicates the correctness of the analysis and the formula. 

We now consider a reverse flow (3rd-level problems) 

hot (DM) 

cold (OM) ~ .  

The groundwork for derivation is similar to that adopted for a forward flow. We write the corresponding 

[1, Table 1 ] differential equations and boundary conditions 

; i ' - p ~ r - a p ( T - t ) = O ;  x = 0 ,  T ' = T - I ~ I ' ;  x =  1, T = 0 ;  (63) 
P 

" i + q ' t + b q ( T - t ) = O "  x = 0  i = 0 "  x = l  t ' = t + l i  (64) , , , , q �9 

The system of differential equations is solved by the higher-order technique 

T ' -  (p - q) T -  (ap + pq + bq) T -  (a - b) pq ;F = O . 

The characteristic equation is 

(65) 
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k 4 - (p - q) k 3 - (ap + pq + bq) k 2 - (a - b) pqk = 0 .  (66) 

The roots are ko = 0, kl, k2, k3 from the equation 

k 3 -  ( 1 9 - q )  k 2 -  ( a p + p q +  bq) k -  ( a - b )  p q = O .  (67) 

The properties of roots kl, k2, k3 are 

k I + k  2 + k  3 = p - q ,  

k l k  2 + k2k 3 + k3k 1 = - (ap + pq + bq ) ,  (68) 

k lk2k  3 = pq (a - b) . 

The solution of differential equation (65) has the form 

T = 20 + 21 exp (klX) + 22 exp (k2x) + 23 exp (k3x) . (69) 

Having substi tuted T from (69) and its derivatives T, 7" into (63), we express t: 

2 kl k2 k2 k3 ka 
t = 2  0 + 2 1  kl + + 1 exp(klX ) +, t  2 + - - +  1 exp(k2x ) + 2  3 + - - +  1 exp(k3x ) ap a ap a ap a 

Using the boundary conditions and their combination, designating T' - t' = A, we obtain the following 
system 

Aap  = ;q (a (p - k l )  - b (p - k l )  exp k l )  + ~2 (a (p - kz)  - b (p - k2) exp  kz)  + 

+ ;t 3 (a (p - ka) - b (p - ka) exp k3), 

0 = 2 1 k  l e x p k  I +22k  2 e x p k  2 + ; t 3 k  3 e x p k  3, 

0 = 21 (k I (k I - p - b) - p (a - b)) + a 2 ( k  2 ( k  z - p - b)  - p (a --  b)) + 

+ a  3(k  3(k  3 - p -  b ) - p ( a -  b)) .  

The solution of this system yields 

Aap  (k 2 exp  k 2(k  3 ( - b - p + k 3 ) - p ( a -  
21 = 

b ) ) - k  3 e x p k  3(k  2 ( - b - p + k 2 ) - p ( a -  b))) 
Z H  

A a p ( k  3 e x p k  3(k  1 ( - b - p + k l ) - P ( a - b ) ) - k  I expk  1 (k 3 ( -  b - p +  k 3 ) - P ( a -  b))) 
't2 = Zn 

Aap  (k I exp k I (k 2 ( -  b - p + k2)  - p ( a  - b ) )  - k 2 exp k z (k~ ( -  b - p + k l )  - p ( a  - b ) ) )  

23 = Zn ' 

where the denominator  is 

Z n = a k  3 [ ( p - k z ) ( k  I ( - b - p + k ~ ) - p ( a - b ) ) - ( p - k l ) ( k  2 ( - b - p + k 2 ) - p ( a - b ) ) l e x p k  3 +  

+ a k  1 [ ( p - k 3 ) ( k  2 ( - b - p + k 2 ) - p ( a - b ) ) -  ( p - k 2 ) ( k  3 ( - b - p + k 3 ) - p ( a - b ) ) ] e x p k  I + 

+ a k  2 [ ( p - k l ) ( k  3 ( - b - p + k 3 ) - p ( a -  b ) ) -  ( P - k 3 ) ( k  1 ( -  b - p + k l ) - P ( a -  b ) ) ] e x p k  2 +  

+ b ( -  ( p - k l )  k z +  ( P - k 2 )  k l ) ( k  3 ( - b - p + k 3 ) - p ( a -  b ) ) e x p ( k  I + k 2 )  + 
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+ b ( -  ( P - k 2 )  k 3 + ( p - k a )  k2)(k  I ( -  b - p + k l ) - p ( a -  b ) ) e x p ( k  2 + k a )  + 

+ b ( -  ( p - k a )  k I + ( P - k l )  k3)(k 2 ( -  b - p  + k 2 ) - P ( a -  b ) ) e x p ( k  a + k l ) .  

As a result, in the reverse flow process of heat transfer the heat flux from the hot agent to the cold agent 
is expressed as 

Q -- G1C 1 (T - T") = G1C 1 Zx= 0 - P - 

/ ) 
Introducing the criterion R -- Q/(G1CIAa) = Q/( ,M(F) and using the properties of roots (68), we obtain 

R = { [((k 2 - ka) (k I (a + q + kl) + q (a - b))) exp k I + ((k 3 - k l )  (k 2 (a + q + k2) -I- q (a  -- b)))  exp k 2 + 

+ ( ( k  1 - k 2 ) ( k  a ( a + q + k a ) + q ( a - b ) ) ) e x p k  a l e x p ( - p ) -  [((k 2 - k a ) ( k  l ( - b - p + k l ) -  

- p (a - b))) exp ( -  kl) + ((k 3 - kl) (k 2 ( -  b - p + k2) - p (a - b))) exp ( -  k2) + 

+ ( ( k  l - k 2 ) ( k  a ( - b - p + k a ) - p ( a - b ) ) ) e x p ( - k a ) l e x p ( - q ) }  x 

•  [((k 2 - k a ) ( k  l ( a + q + k l ) + q ( a - b ) ) ) e x p k  I + ( ( k  a - k l ) ( k  2 ( a + q + k 2 ) +  

+ q ( a - b ) ) ) e x p k  z + ( ( k  1 - k x ) ( k  a ( a + q + k 3 )  + q ( a - b ) ) ) e x p k  3 ] e x p ( - p ) -  

- b [((k 2 - k a ) ( k  1 ( -  b - p + k l ) - p ( a -  b ) ) ) e x p ( - k l )  + ((k 3 - k l ) ( k  2 ( -  b - p +  k 2 ) -  

- p (a - b))) exp ( -  k2) + ((k 1 - kz) (k 3 ( -  b - p + ka) - p (a - b))) exp ( -  ka)] exp ( -  q )} - l  (70) 

In a shorter  presentat ion 

G - H  
R =  

a G -  b H '  

where 

3 3 
G = e x p ( - p )  ~, C i e x p k i ;  H = e x p ( - q )  ~ D i e x p ( - k i ) ;  

i=1 i=1 

C1 = ( k 2 - k 3 ) ( ( a +  q + k l )  k I + q ( a -  b)) ;  

C 2 = (k 3 - kl) ((a + q + k2) k z + q (a - b)) ; 

C 3 = (k I - kz) ((a + q + k3) k 3 + q (a - b)) ; 

D 1 = (k z - k 3 ) ( ( -  b - p + k l )  k I - p ( a -  b)) ;  

D 2 = (k 3 - kl) ( ( -  b - p + k2) k z - p (a - b)) ; 

D 3 = (k 1 - k2) ( ( -  b - p + k3) k 3 - p (a - b)) .  

We consider the limit transition of formula (70). When q ~ oo the transition 

909 



hot (DM) --, hot (DM) --, 

cold (DM) ~ cold (ID) ,--. 

must hold. 

To realize the transition we divide characteristic equation (66) by q 

- - -  - 1  k 2 -  + - - + b  k - p ( a - b ) = O .  
q q 

For q --, oo we have k3 ~ - ( q  + b), and roots kl and k2 are found from the quadratic equation 

k 2 -  ( p +  b) k - p ( a -  b) = 0 .  

We substitute k3 = - ( q  + b) into Eq. (70) allowing for the fact that  in this case C1 --" q2(a - b + kl); 

C2 ~ - q 2 ( a -  b + k2); C 3 ~ 0 ;  D 1 ~ 0 ;  D 2 ~ 0 ;  D 3-* q2(kl - k2). 

Then  Eq. (70) takes the form 

R = 
(a - b + k2) exp ( -  kl) - (a - b + kl) exp ( -  k2) + (k I - k2) 

a ((a - b + k2) exp ( -  kl) - (a - b + kl) exp ( -  k2) ) + b (k I - k2) " 

Finally 

1 ( k I - k 2 

a -  b / 1 -  ( a - b + k l )  e x p ( - k z ) - ( a - b + k z ) e x p ( - k l )  
R ~-- 

1 +  1 -  " 
a - b  ( a -  b + k l )  e x p ( - k 2 ) -  ( a -  b + k 2 )  e x p ( - k l )  

which is in full agreement  with formula (30) obtained in [2 ] for the corresponding 2nd-level problem. 

For q ~ 0 the transition 

hot (DM) ~ hot (DM) --, 
uO 

cold (DM) ~ cold (IA) o .  

must hold. 

When q --, 0 we have k3 ~ (a - b )q /a  and roots kl and k2 are found from the quadratic equation 

k 2 -  p k -  ap = O. 

H e r e  the  p a r a m e t e r s  of (70) a re  the  following: C1 -" klk2(a + kl); C2 ~ - k l k 2 ( a  + k21 

( ( - b - p + k l ) k  1 - p ( a - b ) ) ;  D 2 - - ' , - k l ( ( - b - p + k 2 ) k 2 - p ( a - b ) ) ;  

substitution of these values, Eq. (70) takes the form 

1 k I - k 2 

J a (a + kl) exp ( -  kl) - (a + k2) exp ( -  kl) 

1 + - -  1 -  
a (a + kt) exp ( -  k2) - (a + k2) exp ( -  kt) 

which repeats formula (29) obtained in [2 ] for the corresponding 2nd-level problem. 

Similarly we can consider the limiting cases for the hot agent: when p --- ~ and p --, 0 

{ hot (DM) --, { hot (ID) -- 
when p --, oo cold (DM) ~ ~ cold (DM) ,-- 

kl); - k l k 2 ( a  k2); C 3 ~ 0; D 1 ~ k 2 

D3 --" - ( k l  - k2)p(a - b). A f t e r  
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TABLE 4. Levels of Complexity of Problems and Numbers of Computational Relations 

Cold 

Hot ID -~ DM -, IA # DM ,- ID ,- 
m = l  m--1 m = 0  m = - I  m = - l  

I D - , i =  1 

DM--> 1 = 1 

IAo i = 0 

DM---I = -1  

ID,--I = -1  

6 

28** 

7* 

31"* 

8* 

34 

62 

35 

7O 

36** 

, 

29"* 

10" 

32"* 

11" 

37 

70 

38 

62 

39 

12" 

30** 

13" 

33** 

14" 

Note: Formulas (6)-04) see in [1]; formulas (28)-(39) see in [2]. 

hot (DM) --, { hot (IA) o 
when p --, 0 cold (DM) ~- cold (DM) 

The conducted analysis shows that in the case of a reverse flow the formula for the DM 3rd-level problems 

in the limiting cases naturally passes over to the corresponding formulas of the 2nd-level problems. 

Formulas for the 3rd-level problems are listed in Table 4 in accordance with the level and sign variables. 

We note that we did not succeed in reducing the 3rd-level problems to one general formula. 

Thus, the present work systematizes, to a certain extent, the description of heat and mass transfer processes 

at the level of the DM of flows. The correctness of the obtained formulas is confirmed by their limit transitions to 

the lower level. 
Quantitative estimates of the carrying capacity of the process show that the value Q/A for a heat exchanger 

with flows moving in the DM mode, as should be expected, is intermediate from Q/A for heat exchangers where 

both flows move in the IA mode or in the ID mode. Calculation by the given formulas also illustrates the effect of 

agitation on Q/A: Q/A grows with p(q). 
It is expedient to continue the study for composing general formulas of a higher-order level that provide 

limit transitions to lower levels. 
It is also of interest to use fractional values of sign functions for solving higher-level problems on the basis 

of simpler formulas for lower-level problems. 
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